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Editors’ note. - In the previous issue, we published this editorial with Spanish-speaking authors and readers in mind 
because they constitute most of our audience. However, several non-Spanish-speaking authors have published the 
results of their studies in our journal, and others may intend to do so. Therefore, for our message also to reach them, 
we decided to publish this editorial in English. Beyond languages, we hope that the central message of our editorial 
will stimulate reflection and critical thinking among our audience.

Nota de los editores. - En el número anterior publicamos esta editorial pensando en los autores y lectores hispanopar-
lantes debido a que constituyen la mayor parte de nuestro público. Sin embargo, varios autores no hispanoparlantes 
han publicado los resultados de sus estudios en nuestra revista, y es posible que otros tengan la intención de hacerlo. 
Así, para que nuestro mensaje llegue también a ellos, hemos decidido publicar esta editorial en inglés. Más allá de 
los idiomas, esperamos que el mensaje central de esta editorial estimule la reflexión y el pensamiento crítico de toda 
nuestra audiencia.
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Every experiment may be said to exist only in order to 
give the facts a chance of disproving the null hypothesis. 
Fisher (1935).

Statistics often get a bad name because it is so easy to 
misuse them, unintentionally or not. Sylvan Barnet & 
Hugo Bedau (1993). 

... the inferential capabilities of statistics (whether Bayes-
ian, frequentist, or other) are still profoundly limited. 
Greenland & Poole (2012).

Statistics plays a pivotal role in the scientific process 
and progress (Hampel 1997, Scheiner 2001). Like other 

groups of researchers, ornithologists use statistical tests 
or models to infer patterns or processes and to establish 
generalizations and predictions from the results of our 
research (Buckland 1982, Fowler & Cohen 1996, Under-
hill 1999). This process, known as statistical inference, 
allows us to deepen our empirical and theoretical knowl-
edge about how birds respond to ecological and envi-
ronmental changes (James & McCulloch 1985, North & 
Byron 1985, North 1994, Underhill 1999). However, the 
use of inferential statistics requires sound theoretical and 
methodological justification. Therefore, the specific eval-
uation of statistical analyses is one of the relevant phases 
of the editorial process in any scientific journal (Parker 
et al. 2018). 
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In our experience, defective statistical analyses are 
among the main weaknesses of many manuscripts sub-
mitted to ornithological journals. The main shortcomings 
are that they are incorrect, unjustified, overestimated, or 
even unnecessary. Moreover, many reviewers familiar 
with the central topic of a manuscript are not necessarily 
knowledgeable about statistical theories. Therefore, their 
reviews rarely include comments regarding the validity 
of statistical procedures. On the other hand, some statis-
tically trained reviewers differ regarding the validity of 
the statistical analysis presented in the same manuscript. 
Thus, it is sometimes problematic to decide which statis-
tical recommendation to make to the authors in order for 
them to refine their conclusions from their data. 

To reinforce the review of the statistical analyses 
and provide authors with the best recommendation, since 
June 2021 we have included a new editorial role: the sta-
tistical editor. The purpose is to strengthen our editori-
al team from the statistical and methodological point of 
view. The principal function of the statistical editor will 
be to verify whether the statistical procedures presented 
by the authors are valid in light of their sampling design 
and the nature of the information. The statistical editor’s 
review will be before or simultaneous with the evaluation 
of the peer reviewers so that the editor-in-chief will have 
a more informed assessment. In addition, the statistical 
editor will be in-charge of the statistical literacy section 
that we will incorporate in future journal issues. All the 
above will ultimately benefit the authors as it will prevent 
their manuscripts from being weakened by poor statisti-
cal analysis.

Given the current crisis of experimental replica-
tion, the loss of confidence in the frequentist paradigm, 
and the “statistical war” between frequentists and Bayes-
ians (Gelman & Loken 2014, Wasserstein & Lazar 2016, 
Amrhein et al. 2017), professional statistical advice is 
more necessary than ever. In addition, many authors fall 
into serious statistical “sins” due to an obsession with sig-
nificant findings (perhaps in pursuit of fame) or only to 
publish more papers faster and therefore to appear high-
ly productive (Comroy 2019a, Makin & Orban de Xivry 
2019, Orban de Xivry in Comroy 2019b). Thus, we con-
sider it imperative that authors be forewarned of these sit-
uations, so that they might wisely decide how to approach 
their statistical analyses. It is also essential that authors, 
reviewers, and editors place the philosophical principles 
of statistics above statistical algorithms. As ornithologi-
cal journals’ editors, we are in a keystone position to pro-
mote changes that will lead us to use statistics wisely. 
That requires that authors and reviewers be clear about 
the fundamental meaning of statistics and the strengths 
and weaknesses of existing statistical paradigms (Under-

hill 1999, Colling & Szűcs 2021).

How do ornithologists use statistics?
Ornithologists use statistics both descriptively and 

inferentially. In the first case, we analyze and summarize 
information using tables or graphs of frequency distribu-
tion, measures of central tendency or location (e.g., mean, 
median, mode), and variability (e.g., variance, standard 
deviation). Such statistical descriptors are valuable for 
establishing, for example, differences in body size (e.g., 
Egli 1996) or trends in species richness or abundance. 
Although descriptive statistical procedures do not require 
theoretical assumptions and do not necessarily depend on 
experimental designs, they are essential for moving to-
ward inferential statistics.

In the case of inferential statistics, it is fundamen-
tal to decide whether our hypotheses’ predictions are or 
aren’t admissible (Gotelli & Ellison 2004, León-Guerrero 
& Frankfort-Nachmias 2018). Inferential procedures are 
strongly conditional to the rigorous use of the scientific 
method. Before using any inferential method, we must 
establish an explicit research question, and one or sever-
al hypotheses, articulate its predictions, design and exe-
cute experiments, and collect, organize, and summarize 
the information generated by our experiments (Quinn & 
Keough 2002, Gotelli & Ellison 2004). Using inferential 
statistics, we draw conclusions about large groups (pop-
ulations) from small groups (samples). When we do this, 
we presume that samples represent the population, are 
randomly selected, and that our data are reliable.

Currently, ornithologists follow three inferential 
statistical paradigms: classical or frequentist statistics, 
Bayesian statistics, and model selection based on infor-
mation theory. The frequentist paradigm relies on the 
classical concepts of probability, hypothesis testing (null 
[H0] vs alternative hypothesis [H1]), significance testing, 
the significance level or alpha threshold (α), and probabil-
ity value (p-value) (Fisher 1935). Within a defined study 
framework, researchers reject or fail to refuse a hypothe-
sis based on a statistical significance level (Fisher 1935). 
The term frequentist alludes to the long-term frequency 
of results in infinite repetitions of experiments or samples 
(Johnson 1999).

Ornithologists who follow Bayesian statistical pro-
cedures measure the effect of a treatment by incorporat-
ing prior information about a given event to calculate its 
posterior probability. They quantify the evidence strength 
based on the Bayes factor. The higher the Bayes factor, the 
higher the evidence strength. Ornithologists who follow 
this line pre-determine that probability either subjective-
ly (e.g., “founded belief”) or objectively (e.g., previous 
measurements) (van de Schoot et al. 2021). Ornitholo-
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gists driven by the information-theoretic approach select, 
among several candidate models, those with the variables 
with the higher explanatory power using selection crite-
ria that minimize information loss (Burnham & Anderson 
2001). Since each variable in a model represents a hy-
pothesis, model selection is consistent with the concept of 
multiple hypotheses (Chamberlin 1890).

Among the statistical paradigms described, fre-
quentist statistics is prevalent in ornithology. The reason 
is that most scientists and academics have accepted, used, 
and promoted this paradigm for more than five decades. 
Until a few years ago, the frequentist approach was the 
only one taught in universities and widely explained in 
dozens of books. Therefore, many generations of orni-
thologists graduate from their careers with an “essentially 
frequentist mind.” Although the frequentist paradigm has 
several virtues, it suffers from a crisis of confidence due 
to questions about the inferential utility of statistical sig-
nificance tests. However, the causes of this crisis resulted 
mainly from the misuse and abuse of significance tests and 
the misinterpretation of the p-value. This is partly a con-
sequence of the poor teaching of statistics in universities.

Here we provide suggestions that will guide au-
thors on how to wisely approach the use of inferential sta-
tistics before submitting their manuscripts to our journal. 
Although we focus primarily on the frequentist paradigm, 
many of our suggestions will enlighten those looking at 
other statistical paradigms. We know many authors are 
well-familiar with the statistical resources necessary for 
their research. However, other authors have only an in-
cipient notion of the use of statistics. Thus, our sugges-
tions are directed mainly to those authors with little or no 
experience with inferential statistics and those who use 
it only as a ritual within the scope of their research. In ma-
terializing our suggestions, we followed the reflective line 
of Peter Feinsinger (Feinsinger 2001) and the foundations 
of statistical inference according to Ronald Fisher (Fisher 
1922, 1956). We enriched these suggestions with several 
reflections from other authors.

At the end of this editorial, we include a glossary 
of several of the technical and philosophical terms we use 
throughout our story. Although these terms are elemen-
tary, we do not always understand them so clearly, and 
some philosophical concepts are not easy to define and 
assimilate satisfactorily.

Dear author, here are our suggestions:

1. Appropriate use of any inferential statistical procedure 
requires that your results come from a study based on 
a robust experimental design. Ensure that your study 
units are independent (i.e., that neither influences nor 

affects the observations recorded in the other), are ran-
domly distributed, and are randomly selected (James 
& McCulloch 1985, Kamil 1988). In many field sit-
uations, it is not possible to guarantee the condition 
of independence or to randomly assign study units. 
Therefore, you should be cautious of your conclusions 
and state any design limitations in your manuscript 
(see suggestions 20). Ideally, you should obtain an 
appropriate sample size to satisfactorily answer your 
research question or to get support for your biologi-
cal hypothesis (see Recommendation 3). The sample 
size calculation should consider, as a minimum, some 
empirical criteria (e.g., ≥ 20 replicates; Simmons et 
al. 2013). Without these essential requirements, the 
use of any inferential statistics will lead to spurious or 
distorted results. There is a varied supply of books on 
experimental design. For the design of field studies, 
we recommend the books by Feinsinger (2001) and 
Scheiner & Gurevitch (2001) and the chapter on the 
design of experiments in the book by Gotelli & Elli-
son (2004).

2. When you cannot obtain a statistically adequate 
number of study units, you can follow “the Rule of 
10” (Gotelli & Ellison 2004). This rule has no theo-
retical basis but reflects the experience gained in the 
field with successful and unsuccessful experimental 
designs. In exceptional cases (e.g., a naturally rare 
species), a minimum of five sampling units (e.g., nest 
site) per condition (e.g., habitat type) may be accept-
able. Ad hoc statistical tests exist for these exceptions. 
However, your statistical power will be lowest (see 
suggestion 3), and you run the risk that your infer-
ences will be very limited.

3. Consider measuring statistical power before design-
ing your study (see Glossary). When calculating the 
sample size, you should estimate how big is the type II 
error (see Glossary). Statistical power tells you wheth-
er the number of study units you determined was suffi-
cient to detect an effect when that effect exists (Steidl 
& Thomas 2001, Lecoutre et al. 2005). The higher the 
statistical power, the greater the chance of detecting 
a true effect. However, be aware that high statistical 
power does not always guarantee the finding of a true 
effect (Button et al. 2013). We also recommend calcu-
lating statistical power after you have gotten the sam-
ple so that you are able to realize the inferential lim-
itations of your study. Overall, field studies achieve 
low to medium statistical power due to the difficulty 
of obtaining sufficient replicates (Halsey et al. 2015, 
Parker et al. 2018). Knowing the statistical power of 
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your study will also guide you regarding the robust-
ness of your experimental design to the possibility of 
using non-frequentist statistical methods (Steidl & 
Thomas 2001).

4. On many occasions, you may have difficulty obtain-
ing a statistically appropriate number of study units 
(e.g., < 10) and will have to settle for very few (see 
recommendation 3). In these cases, it is practical to 
visualize your data graphically and qualitatively iden-
tify any trends or associations (Ellison 2001). You can 
also describe your data using measures of central ten-
dency (e.g., mean, median, mode) or dispersion (e.g., 
range, standard deviation). There are several frequen-
tist statistical tests designed to analyze small sample 
sizes (Zar 1999). However, before you decide to use 
them, check whether they are valid for studies based 
on observational experiments. 

5. Plan your statistical analysis before implementing 
your study and use the most straightforward inferen-
tial procedure that fits your experimental design. If 
your results come from field studies, you should pre-
fer nonparametric tests or models. Overall, the non-
parametric methods are appropriate for small sample 
sizes and have fewer restrictions than their parametric 
analogs (Fowler & Cohen 1994, Siegel & Castellan 
1995). Nonparametric procedures only require we sort 
the different measures of a variable of interest that we 
wish to compare across data sets.

6. Always have at hand appropriate statistical texts for 
your study field. In the case of simple experimental 
designs, we recommend the book by Fowler & Co-
hen (1994). A quite didactic and entertaining book is 
Salkind (2017). Always ensure that the texts contain 
descriptions of a wide range of nonparametric statis-
tical tests. We recommend books by Zar (1999) and 
Siegel & Castellan (1995). Sokal & Rohlf (1969) pro-
vide quite didactic descriptions of some nonparamet-
ric procedures. Nonparametric procedures are often 
the most appropriate for the analysis of results from 
field studies (see Recommendation 10). All the above 
books have a pure frequentist approach. A text that 
also contains descriptions of non-frequentist proce-
dures is Quinn & Keough (2002). Two good books to 
open the Bayesian mind are by McElreath (2016) and 
Field (2016). Most of these books are in English, but 
several basic statistics books in Spanish are available 
on-internet (e.g., Blair & Taylor 2008). 

7. Always reflect on whether you need to apply any infer-

ential statistical procedure. Even if your experimental 
design is sound and your sample is large, statistical 
tests or models are often unnecessary or inappropriate 
for analyzing your results (Sokal & Rohlf 1969, Cher-
ry 1998, Johnson 1999). Many field experiments are 
subject to environmental variables not considered by 
the researcher. If you do not control such variables, it 
is best not to apply any inferential procedures. In addi-
tion, for logistical reasons or natural limitations (e.g., 
natural scarcity of a habitat type), you may not be able 
to meet the assumption of spatial independence of 
your study units. In these cases, you could obtain an 
enormous amount of interesting biological informa-
tion whose value will not be increased by an inferen-
tial statistical analysis. Indeed, that analysis would be 
inappropriate. There is more. Your experimental de-
sign may be indisputably robust, but if the effect size 
is evident, you don’t need to “garnish” your finding 
with any statistical algorithms. Again, a graphical dis-
play of your results in combination with descriptive 
statistical resources may be the best way to extract the 
best information from your data (Cherry 1998, Lang 
et al. 1998, Ellison 2001, Cumming 2012).

8. Before using procedures based on statistical signifi-
cance tests, be aware that such tests possess several 
limitations that make them inappropriate or useless 
for observational studies (Buckland 1982, Cherry 
1998, Johnson 1999, Greenland & Poole 2013). Over-
all, statistical significance tests are uninformative and 
logically poor, the α level is arbitrary and without the-
oretical basis, and the p-value is vulnerable to misin-
terpretation (e.g., Yoccoz 1991, Anderson et al. 2000, 
Martínez-Abraín & Oro 2005, Greenland & Poole 
2013). Furthermore, the p-value leads to dichotomous 
decisions, such as to admit or not admit the null hy-
pothesis and doesn’t allow us to quantify the direction 
of the difference found. Finally, the p-value is sensi-
tive to sample size (Underhill 1999). For example, if 
two ornithologists conduct the same experiment with 
different sample sizes, say ten vs 30, they might reach 
opposite conclusions (i.e., p > 0.05 vs p < 0.05).

9. When justifiably using tests of statistical significance, 
do not label your findings using the terms “statistically 
significant” (e.g., p < 0.05) or “statistically non-signif-
icant” (e.g., p > 0.05). In common parlance, persons 
interpret the term “significant” as reliable. However, a 
p-value < 0.05 and a p-value > 0.05 are not necessar-
ily evidence that the null hypothesis is false or true, 
respectively (Amrhein et al. 2019). Remember that α 
is an arbitrary value!
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10. Avoid the “significant-itis” (i.e., the compulsive ob-
session with statistically significant findings; Chia 
1997). Many authors living in the “p-value culture” 
(Nelder 1999) pursue statistically significant results 
because (i) they confuse the p-value as an indicator 
of the evidence strength, and (ii) it is the only way 
for their manuscripts to be acceptable to editors and 
reviewers with the same confusion (Underhill 1999, 
Martínez-Abraín & Oro 2005, Sedgwick 2022). The 
“p-value culture” may even lead some researchers to 
p-value hacking (i.e., pushing their p-values toward 
significant limits to make their findings appear rel-
evant and publishable [Comroy 2019a]). However, 
statistical significance does not necessarily reflect the 
biological or clinical relevance of our findings (Po-
tish et al. 1980, Krebs 1989, Yoccoz 1991, Underhill 
1999, Malay 2016). The statistically little differences 
can have biologically considerable consequences. It is 
always worthwhile to remember that Fisher’s inten-
tion was that we use statistical significance only as a 
tool to indicate that our results warrant further investi-
gation (Fisher 1935, Sedgwick et al. 2022).

11. When appropriate, calculate confidence intervals 
around the measure of interest (e.g., the mean) for dif-
ferent levels or groups of samples (Martínez-Abraín 
& Oro 2005). Confidence intervals let you know how 
reasonable your estimates are, reliably compare esti-
mates from distinct sample groups, and whether there 
are any biologically significant effects (i.e., the effect 
size). In most studies, estimation will be more im-
portant than applying a statistical test (Yoccoz 1991, 
Cherry 1998, Krebs 2000). Always graphically com-
pare your confidence intervals to visualize the magni-
tude of the effect. The latter increases the informative 
power of your analyses (Cherry 1998, Johnson 1999, 
Ellison 2001).

12. Consult a professional biostatistician when you do 
not understand or have doubts about using a complex 
statistical procedure (Buckland 1980, Gustavii 2008). 
If your study is observational, look for a biostatisti-
cian who has experience with observational designs 
and knows the limitations of information from studies 
conducted in the field. Be aware that some biostatisti-
cians may disagree about using some statistical proce-
dures, which may confuse you further. For example, 
one professional may require you to use statistical 
modeling to analyze your results from just five sam-
pling sites. However, another may suggest you only 
evaluate your data with descriptive statistics. In these 
cases, be wise and opt for the most straightforward 

and informative solution.

13. Do not use sophisticated statistical procedures only to 
surprise reviewers or show that your study is statisti-
cally advanced, especially if you have few observa-
tions or if your study is merely observational. Because 
multivariate analyses “process” multiple questions or 
multiple hypotheses at once, researchers must meet 
several theoretical and empirical assumptions. In ad-
dition, users of these analyses must perform several 
non-explicit tests and adjustments before inferring 
anything from their information. The latter leads to a 
critical problem. With each additional test, the prob-
ability increases that a researcher will erroneously 
conclude that there is at least one “statistically signif-
icant” effect (Gelman et al. 2012, Gelman & Loken 
2014). When researchers use multivariate procedures 
to draw inferences from exploratory or observational 
studies, their conclusions are often spurious (James & 
McCulloch 1990).

14. When you justifiably use sophisticated statistical pro-
cedures, try to describe them as clearly, readily, di-
dactically, and intuitively as possible (e.g., Fowler & 
Cohen 1996, Gustavii 2008, In & Lee 2017). When 
reporting your results, do so considering readers’ “left 
brain” and “right brain” in mind, i.e., do not just de-
liver “hard” numerical values to support your conclu-
sions, but also enlighten your readers by pleasantly 
relating the extent of those values (Buckland 1980). 
Remember that our journal focuses on a broad audi-
ence. Therefore, the universe of our readers may have 
a widely varying level of statistical knowledge. An-
derson et al. (2001) and Brennan (2012) offer guide-
lines for informatively presenting the results of sta-
tistical analyses within a manuscript. Thirty-six years 
ago, John Gerrard (1985) stated that the interplay 
between amateur and professional workers is one of 
the strengths of ornithology compared to other ar-
eas of scientific investigation. However, Gerrard also 
warned that this strength was at risk because profes-
sional ornithologists were using sophisticated statisti-
cal techniques incomprehensible to amateur ornithol-
ogists. No doubt that caution still stands.

15. Do not assume that statistical programs, no matter 
how sophisticated, provide truly reliable results (e.g., 
Eklund et al. 2016). Computer programs allow us to 
save time and minimize hand work, but they are falli-
ble (Littlewood & Strigin 1992). Moreover, statistical 
programs do not discriminate whether your data come 
from a robust or flawed experimental design. On the 



6     NOTA EDITORIAL Figueroa & Alvarado

other hand, programs designed for model simulation 
can generate exacerbated values of a statistical index 
and, thereby, could lead you to spurious conclusions 
(White et al. 2014). If your results seem “suspects” 
or biologically meaningless, rethink your analyses or 
seek expert guidance. Always be willing to reconsider 
your data and analysis results (Carraway 2009). It will 
always be revealing to contrast the statistical indica-
tors provided by your computer program with a graph-
ical representation of your results. If you find that they 
are congruent, then rest assured. If not (again), culti-
vate your wise and opt for the more straightforward 
yet informative alternative.

16. Be wary of “hype” about the superior virtues of 
emerging statistical paradigms. Several researchers 
have made an intense and widespread call in the lit-
erature to replace frequentist statistics with Bayesian 
statistics or model selection (e.g., Anderson et al. 
2000, Anderson & Burnham 2002, Ellison 2004). Al-
though these same researchers call for the appropri-
ate use of these emerging statistical paradigms, many 
others tend to apply them inappropriately. If you wish 
to look into these emerging paradigms, we recom-
mend that you become well-informed about their the-
oretical and methodological bases. In such cases, it is 
strictly necessary you seek the advice of a specialized 
biostatistician.

17. Don’t despise philosophy. We use statistics to decide 
what is true and what is not (Goodman 2016, Sedg-
wick 2022). Therefore, we need a basic understand-
ing of the philosophical underpinnings of each sta-
tistical paradigm to informally decide which one we 
will follow (Sedgwick 2022). Surprising as it may 
seem, many ecologists, including ornithologists, are 
unaware of the paradigms within which they operate 
(Krebs 2000). Knowing the philosophical basis of 
each statistical paradigm will also guide you about 
the scope of your inferences. Statistics help us in 
the search for the truth contained in nature. Howev-
er, statistical paradigms are human constructs and, 
therefore, are fallible (Sedgwick 2022). Thus, we 
run the risk of such constructs leading us down a 
path away from the truth (Greenland & Poole 2013). 
It may be uncomfortable to put down your computer 
keyboard and no longer “run” your “flagship” statis-
tical program. It may be boring for you to read about 
statistical philosophy. However, you don’t need to 
read all about Popper or Bayes; a good encyclopedia 
of statistical philosophy will suffice (e.g., Zalta & 
Nodelman 2021). If you can get a little notion about 

the philosophical foundations of inferential statis-
tics, you will resist the “siren calls” of the emerging 
statistical paradigms. 

18. Try to educate yourself in statistics and learn what is 
substantial in the field. We know that university cours-
es in statistics strongly incline toward the mechanical 
use of statistical algorithms. Instructors accentuate 
that practice by using the various offers of computer 
programs. Even worse are statistics courses in non-sta-
tistical postgraduate studies. Generally, instructors of 
these “advanced” courses overwhelm students from 
week to week with dozens of statistical articles. That 
is what Salkind (2017) aptly calls “sadistics”. The ab-
sence of pedagogy degrades the quality of statistics 
courses (Zieffler 2018). The good thing is that there 
are many resources on the internet to learn statistics in 
a friendly, effective, and autonomous way. The portal 
of www.youtube.com is abundant in tutorials to intro-
duce statistical concepts and procedures. Of course, 
some wise authors write practical and engaging books 
on statistics (e.g., Fowler & Cohen 1994, Field 2016, 
Salkind 2017). One rather fun book focused on giving 
meaning and “flavor” to statistics is Huff (1993).  

19. Krebs (2000) wisely advised us to spend more time on 
real ecological issues. For better or worse, inferential 
statistics cuts across many matters in ecology. When 
you are in the field, reflect on the rationale for statisti-
cal inference in ornithology. Remember that statistical 
inference is the process of drawing conclusions about 
a population using information from a set of (often 
small) samples from that same population. When you 
visit your sampling units in the field, you will notice 
that you are unlikely to get each sample under the 
same conditions. That is because each sampling unit 
will vary spatially and temporally and because your 
perception may vary in each sampling unit. The latter 
is difficult to control statistically. However, the prom-
inent virtue of statistics is that it helps us deal with 
the uncertainty and variability inherent in the natural 
world (Sokal & Rohlf 1969). Thus, rather than view-
ing statistical inference as a process of reaching con-
clusions, we should see it as a way of accepting and 
measuring the uncertainty and variability in our infor-
mation (Mallows 1998, Gelman 2016, 2019, Amrhein 
et al. 2017, Tong 2019).

20. Always acknowledge explicitly in your manuscript 
the limitations of your experimental designs and sta-
tistical analyses. When aware of your statistical er-
rors, admit them and correct them promptly (Gelman 



2018, 2020). Do control speculation. Do not conclude 
or infer anything beyond what your results reveal. 
Generally, extrapolations are risky in a statistical con-
text (Buckland 1980). Honesty and transparency are 
fundamental to the integrity of science (Gelman 2017, 
2018, Parker et al. 2018). Authors who report appro-
priately are more credible. Often our biases and ego 
make us forget that we are fallible and that our studies 
are not perfect (Gigerenzer 1993, Lanni 2021). Admit-
ting our mistakes is the essence of scientific progress 
(Kareiva & Marvier 2018). Vuilleumier (2004) made 
us realize that learning from mistakes allows tremen-
dous theoretical advances in ornithology.

21. Keep the following messages in mind. Statistics is 
not a toolbox for research purposes. The true mean-
ing of statistics is to learn from information and to 
measure, control, and communicate the uncertainty 
and variability contained in that information (Wild 
et al. 2018). Statistical procedures applied judicious-
ly and modestly protect us from false findings (Cox 
2001). The wise and honest use of statistics helps us 
understand the surrounding world and bring us closer 
to the truth we seek within it (Salkind 2017, Sedgwick 
2022). Statistics can help us see the world clearly if 
we are willing to look (Tarran 2020).

Our commitment as editors
The judicious use of statistics helps to reveal the links be-
tween our findings and the theories in which we frame 
our studies. The results of statistical analysis permit us 
to evaluate our hypotheses and theories, uncover unex-
pected patterns and trends, and provide the impetus to 
reformulate the approaches we work with (Krebs 2000, 
León-Guerrero & Frankfort-Nachmias 2018). However, 
a statistical procedure is only a tiny part of the research 
process, and even the most rigorous statistical method will 
not reveal the whole truth we are pursuing.

On the other hand, all scientific research is vul-
nerable to statistical misuse and researcher bias (Gelman 
2018, Kareiva & Marvier 2018). The (often unintentional) 
misuse and abuse of statistics combined with poor exper-
imental designs have resulted in many spurious or at least 
questionable findings (Ioannidis 2005, Ioannidis et al. 
2014). That can considerably delay progress in ornitholo-
gy (Martínez-Abraín & Oro 2005). Your duty as an author 
is to always match your statistical analyses appropriately 
and realistically to your experimental design and scien-
tific reasoning (Goodman 2016). Like Buckland (1980), 
we hope our suggestions will encourage ornithologists to 
use statistics skillfully and wisely and reorient those who 
apply them inappropriately.

Both editors and reviewers of scientific journals are 
the arbiters of scientific practice (Cherry 1998, Johnson 
1999, Parker et al. 2018, Sedgwick et al. 2022). There-
fore, we do not only need to understand how statistical 
procedures work but to convey their appropriate use to au-
thors (Johnson 1999, Underhill 1999). The latter includes 
cautioning authors to frame their conclusions within the 
limitations of their study. We should have no objections 
when the authors present well-meshed statistical analyses 
with a sound experimental design. However, if the authors 
present poor or inadequate statistical analyses, our ethical 
and professional responsibility is to suggest to them the 
wisest options (Parker et al. 2018). The latter might even 
include discarding any inferential statistical analysis. In 
the face of poor statistical analysis, we editors and review-
ers have a responsibility to suggest changes that appro-
priately ensure both the credibility of the findings and the 
authors’ prestige (Ioannidis 2014). Although our role is to 
“judge” the scientific merit of each manuscript, one of our 
premises is not to reject a manuscript due to analytical er-
rors that are correctable. As editors of the Revista Chilena 
de Ornitología, we will always be available for statistical 
assistance to authors who require it.

GLOSSARY...OF SOME STATISTICALLY SIGNIFICANT TERMS!

Alpha (α), α level, α value, “significance level”: is the proba-
bility of making a type I error (see below). A researcher must 
adopt or decide which α to use before the design of experi-
ments. We can interpret α as a numerical value set “nominal-
ly” based on experience and that we expect to make an error. 
Ornithologists typically adopt an α = 5%.

Experimental design: any planned experiment, whether it is 
a well-controlled experiment (typically a laboratory experi-
ment), a manipulative experiment in the field (e.g., natural 
precondition vs intervened postcondition), or an observation-
al or mensurative (i.e., comparison of two or more natural 
situations without the intervention of the researcher) (James 
& McCulloch 1985, Scheiner & Gurevitch 2001, Gotelli & 
Ellison 2004).

Type I error: we commit a type I error when we reject the null 
hypothesis as being true.

Type II error: we commit a type II error when we do not re-
ject the null hypothesis as being false.

Evidence: fact or a piece of information that supports what 
we believe, postulate, or hypothesize (Zalta & Nodelman 
2021).
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Hypothesis: is a general proposition that suggests an expla-
nation for an observed phenomenon (Krebs 2000). We can 
verify only indirectly one hypothesis by examining its pre-
dictions (Farji-Brener 2004).

Alternative hypothesis (H1): is a hypothesis of difference or 
association between treatments or experimental conditions: 
i.e., that suggests an effect. It’s the hypothesis that the re-
searcher postulates as valid based on the patterns observed 
in his or her data, which differ from what the null postulates.

Null or null hypothesis (H0): is a hypothesis of no difference 
or association between treatments or experimental condi-
tions. Under significance testing, this hypothesis is admis-
sible until there is no evidence to the contrary and the stated 
value of the parameter is valid. A researcher relies on a null to 
explain the patterns observed in the data in a simple way, at-
tributing any variation in the data to chance or measurement 
error (Gotelli & Ellison 2004).

H0 and H1 are essentially statistical hypotheses; that 
is, they are restricted, operational guesses about the value of 
a particular (population) “parameter” and represent expected 
outcomes under different biological scenarios (Farji-Brener 
2004).

Statistical inference: the process of drawing conclusions 
about the population using information from a sample or a 
set of samples from that population. Statistical inference is 
made possible by mathematical methods.

Confidence interval: is the range of values around a statistical 
estimator’s value (e.g., mean estimate) obtained from a sample 
and which theoretically will include with a high probability 
the value of the population parameter. Usually, ornithologists 
estimate 95% confidence intervals (Fowler & Cohen 1994). 
That is a confidence interval that includes, for example, the 
population mean in 95 trials out of 100. The advantage of con-
fidence intervals is that they allow a quantitative assessment 
of the magnitude of the effect and its precision.

Paradigm: is a worldview; a broad approach to the problems 
addressed in a field of science (Krebs 2000).

Statistical parameter: is the value of a mathematical func-
tion that summarizes the information about a variable under 
study (e.g., mean, variance, standard deviation). The term 
parameter came from the Greek parametron meaning beyond 
measurement. Since we do not know the value of the popu-
lation parameters, we calculate that value by means of the 
measurements obtained in a sample or several samples of 
that population by means of a mathematical function called 
“estimator” while “estimation” is the specific calculation re-

lated to one sample. Thus, we should not confuse “estima-
tion” with “parameter”; a statistical parameter will always be 
“beyond our measurement.”

Statistical power: is a measure of the ability of an experi-
ment to detect an effect when that effect exists (Button et al. 
2013, Halsey et al. 2015). Mathematically, statistical power 
is the complement of beta: 1 - β. Thus, the higher the statisti-
cal power, the lower the probability of making a type II error 
and the higher the chance of detecting an effect. Although the 
level of statistical power depends on several factors, the sam-
ple size is decisive. If an ornithologist bases an experimental 
study on a small sample size, it will have low statistical pow-
er. Depending on the study type, a researcher may exaggerate 
the effect magnitude when using samples too small. For this 
reason, when one expects effect sizes to be weak or moder-
ate, it is advisable to avoid inferences based on the p-value 
threshold when the sample size is small (e.g., < 10).

Prediction: predictions are expected outcomes assuming that 
our research hypothesis is true. That is to say, the null and 
alternative express precisely the result we expected if our bi-
ological hypothesis is correct (Farji-Brener 2004).

Statistical significance: there are many ways to think about 
and approach the concept of statistical significance. Usually, 
we call statistical significance the α value. That is relevant 
when we perform hypothesis testing, since the rejection or 
not of the null hypothesis depends on whether the p-value 
remains under or over α. We give the most conservative defi-
nition based on the Fisherian paradigm and which considers 
statistical reasoning beyond the analytical contrast:

We reach statistical significance in a sample under study 
when the results are observable in the population on which 
we perform the statistical sampling (probabilistic) and are 
not due to chance, but these respond to patterns of evidence 
consistent enough to be observable in samples coming from 
that population.

Due to the impossibility of studying the population, we try to 
observe this pattern in the sample (usually a single sample) 
and infer what happens in the population by means of sta-
tistical methods of contrast based on statistical significance 
tests. The statistical significance testing permit us to rule out 
chance as the explanation for what we observed. For this rea-
son, we randomized the samples. We performed a random-
ization process to avoid systematic deviations induced by the 
experimenter when selecting the units under study.

Effect size: is the magnitude of an effect observed after an 
experimental treatment. Depending on the question, a re-
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searcher measures effect size by quantifying the difference 
between two treatments or conditions or measuring the asso-
ciation strength between two variables or processes (Button 
et al. 2013). Often, researchers use standardized categories 
of effect size (e.g., weak, moderate, strong; see Cohen 1988). 
The effect measured in a sample is an estimate of the “true” 
effect size in the population. Usually, we interpret the p-value 
by assuming the true effect size is zero (Halsey et al. 2015).

p-value: is conceptually the probability that a statistical es-
timator (e.g., correlation coefficient) is as or more extreme 
than its observed value (estimate) given the null hypothesis 
(Wasserstein & Lazar 2016). Put another way, the p-value is 
the probability of making a type I error if we reject the null 
hypothesis based on the data analysis. After comparing the 
p-value with α, we adopt the rule that if p < α, we reject H0 
(i.e., retain H1), and if p > α, we admit H0 (i.e., reject H1). The 
equality of p and α is controversial, and we will address it 
later in the statistical literacy section.

Truth: is a profoundly philosophical concept, and its defi-
nition (if it is definable at all) is subject to various ideolo-
gies (Zalta & Nodelman 2021). In scientific terms, we can 
mean “truth” as the set of invariant or undeniable properties 
of nature (e.g., organisms, patterns, processes, mechanisms) 
(Cohen 1980). At least, this is the truth that interests us as 
ornithologists. Many of nature’s properties are invisible or 
intangible, and we will look for evidence that brings us closer 
to them. In doing so, we postulate hypotheses, design exper-
iments, analyze our results, and apply inferential procedures. 
If everything is well, our inferences will reflect something of 
the truth we seek.
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